|
>> 10 . |
1.
12.. , , . 1. υ0 = 20 /. t = 2 , , 16 /. , .
. , - , . (. 1.47). : = (υ - υ0)/t = -2 /2. , , . = |x| = |-2 /2| = 2 /2. 2. υ0 = 4 /. = 2 /2. t = 2 . h 4 . , , ? . OY . , = 0 + υ0yt + ayt2/2. 0 = h, υ0y = υ0, = -, = . = h + υ0t - at2/2; = 8.
3. 1.48 . 1) . 2) , t3. 3) , t3. . 0 , . 1 = (υ1 - 0)/t1 = 1 /2. Δt t2 - t1 : υ = υ1 = const, 2 = 0. t > t2 3 = (0 - υ1)/(t3 - t2) = -0,5 /2.
(1.49, ) x t. x(t) 0 < t < t1 = 0 + a1xt2/2 t = t1, 1 = a1xt12/2 = 8 . t1 υ1, : 2 = 1 + υ1x(t2 - t1) = 32 . t = t2 : x3 = x2 + υ1x(t3 - t2) - 3(t3 - t2)2/2 = 48 .
υ = x3/t3 ≈ 2,7 /.
x(t) (1.49, ). , x(t), : , , . , ( ), x(t) . (. . 1.48):
υ3 = υ1xt1/2 + υ1x(t2 t1) + υ1x(t3 t2)/2 = 48 .
1. . , υ0 = 4 /, = 2 /2. 4 .
2. 0 = 10 υ0 = 20 /, . , 10 /2. 1, 2, 3, 4 .
3. 1.50 . .
|
|
|