Биология

Учебник для 10-11 классов

§ 31. Взаимодействие генов. Внеядерная наследственность

В примерах, которые мы до сих пор рассматривали, каждый ген определял только один признак и развитие каждого признака зависело только от одного гена. Однако, как правило, отношения между генами и признаками гораздо сложнее.

Множественное действие гена. Один и тот же ген может влиять на формирование ряда признаков организма. Например, ген, вызывающий образование бурой семенной кожуры у гороха, способствует развитию пигмента и в других частях растений. Растения с семенами, покрытыми бурой семенной кожурой, имеют цветки фиолетовой окраски, а растения с белой кожурой семян — белые цветки. Влияние одного гена на развитие многих признаков называют множественным действием гена. Такое множественное действие характерно для большинства генов.

Обычно судят о действии гена только по тем признакам, которые легко обнаруживаются. Например, у мухи дрозофилы глаза имеют красную окраску, развитие которой обусловлено присутствием гена W. При наличии аллелей w пигмент, влияющий на окраску глаз, отсутствует и они становятся белыми. Оказалось, что аллель w влияет также на осветление окраски тела и изменение формы некоторых внутренних органов мухи.

В некоторых случаях проявление множественного действия гена легко наблюдать. Например, у человека есть ген, определяющий рыжую окраску волос. Этот же ген обусловливает более светлую окраску кожи, а также появление веснушек. У растений гороха ген, отвечающий за красную окраску цветков, определяет и красноватый оттенок стеблей.

Отношение ген — признак. При скрещивании в результате взаимодействия двух различных генов в потомстве могут возникать новые признаки, отсутствовавшие у родительских организмов. Это явление называют новообразованием при скрещиваниях. Его очень часто наблюдают при разведении домашних животных и культурных растений.

Приведем пример. У душистого горошка — садового растения — есть много сортов, которые отличаются по окраске цветков, в частности сорта с белыми цветками. При некоторых комбинациях скрещивания двух белых сортов между собой полученные семена дают растения с фиолетовыми цветками. Биохимический анализ показал, что фиолетовая окраска цветков душистого горошка — результат реакции между двумя веществами, каждое из этих веществ образуется под действием определенного гена. Имеется два гена, каждый с двумя аллелями — С, с и Р, р. Окраска цветков образуется тогда, когда в генотипе растения присутствуют одновременно два доминантных гена С и Р. Скрещивание двух сортов душистого горошка с белыми цветками, когда гибриды первого поколения имеют фиолетовые цветки, записывают следующим образом:

Таким образом, мы видим, что в генотипе любого организма гены взаимодействуют между собой; на фенотипическое проявление признака влияет целый комплекс генов. Сочетания генов в организме обусловливают индивидуальные различия особей одного вида.

Внеядерная наследственность. Приведенные выше примеры ведущей роли ядра и хромосом в генетических процессах не следует рассматривать как свидетельство отсутствия какой-либо роли цитоплазмы в передаче свойств из поколения в поколение. Участие цитоплазмы в формировании некоторых признаков связано с работой внеядерных генов, расположенных в органоидах. Митохондрии и хлоропласты содержат ДНК, ее гены кодируют ряд признаков. О наличии внеядерных генов свидетельствуют данные о наследовании некоторых признаков у растений. К их числу относится пестролистность у ночной красавицы и львиного зева.

Наследование этого признака не укладывается в рамки законов Менделя. Объясняется такое наследование тем, что пластиды бывают окрашенные и неокрашенные. Эти органоиды воспроизводятся в клетке независимо от деления ядра и случайно распределяются между дочерними клетками. Из клеток, содержащих смесь зеленых и неокрашенных пластид, при делении могут появляться клетки трех возможных типов: содержащие только неокрашенные, только окрашенные пластиды и содержащие смесь пластид. В результате возникают три варианта окраски растений: окрашенные, неокрашенные и мозаичные. Поскольку единственный способ проникновения пластид в зиготу связан с яйцеклеткой, а не со спермием (так как он не содержит пластид), наблюдается материнское наследование.

Известно множество фактов, доказывающих существование внеядерной наследственности не только у растений, но и у животных и микроорганизмов.


  1. Какое потомство будет получено в F2, если растение с фиолетовыми цветками (СсРр) будет размножаться самоопылением?
  2. Что такое новообразование? Приведите примеры.
  3. Чем отличается внеядерная наследственность от ядерной (менделевской) наследственности?

Рейтинг@Mail.ru

Содержание